skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aglagul, Denis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present theoretical observations on the topological nature of strained III–V semiconductors. By k·p perturbation, it can be shown that the strain-engineered conduction band hosts a Kramers–Weyl node at the Γ point. It is theoretically shown that a curated strain can create and then tune the sign of the topological charge. Furthermore, we outline experimental methods for both the realization and detection of strain-induced topological phase transitions. 
    more » « less
    Free, publicly-accessible full text available February 24, 2026
  2. We present a simple approach to characterize the spatial variation of the gain in microchannel plate (MCP) coupled to phosphor detectors using single electron or photon hits. The technique is easy to implement and general enough to be extended to other kinds of detectors. We demonstrate the efficacy of the approach on both laboratory and Monte Carlo generated datasets. Furthermore, we use the approach to measure the variation in gain over time as the MCP is exposed to an increasing number of electrons. 
    more » « less